Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(10)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37408264

RESUMO

The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms.


Assuntos
Divisão Celular , Citocinese , Synechococcus , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Técnicas de Cultura Celular por Lotes , Proteômica , Meios de Cultura/metabolismo , Proteínas de Bactérias/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834552

RESUMO

Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.


Assuntos
Dependovirus , Sindecana-4 , Humanos , Dependovirus/metabolismo , Proteoglicanas de Heparan Sulfato , Heparitina Sulfato/metabolismo , Sulfatos , Sindecana-1 , Sindecanas/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886958

RESUMO

Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2's spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Distribuição Tecidual , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , SARS-CoV-2/metabolismo , Sindecanas/metabolismo , Distribuição Tecidual/fisiologia
4.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054983

RESUMO

Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.


Assuntos
COVID-19/transmissão , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Sindecana-4/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linhagem Celular , Proteoglicanas de Heparan Sulfato/antagonistas & inibidores , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Sindecana-4/genética , Internalização do Vírus
5.
Front Plant Sci ; 12: 725699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868111

RESUMO

The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.

6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209175

RESUMO

Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer's disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aß). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aß pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE-heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aß uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aß, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aß aggregated: while ApoE2 reduced the uptake of Aß aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4's tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aß pathology.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Agregados Proteicos , Sindecana-3/metabolismo , Linhagem Celular Tumoral , Humanos , Isoformas de Proteínas
7.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069441

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sindecanas/metabolismo , Internalização do Vírus , Amilorida/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , COVID-19/virologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Humanos , Peptídeos/farmacologia , Domínios Proteicos , SARS-CoV-2/metabolismo , Sindecana-4/antagonistas & inibidores , Sindecana-4/metabolismo , Sindecanas/antagonistas & inibidores
8.
Cancers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801718

RESUMO

Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the ß-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.

9.
Biomolecules ; 10(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977498

RESUMO

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína Proto-Oncogênica c-ets-1/genética , Sindecana-1/genética , Fator de Transcrição AP-1/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Heparitina Sulfato/farmacologia , Fator de Crescimento de Hepatócito/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Sci Rep ; 9(1): 16543, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719623

RESUMO

Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.


Assuntos
Endocitose , Sindecanas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Humanos , Células K562 , Proteínas de Membrana/metabolismo , Domínios Proteicos , Sindecanas/química , alfa-Sinucleína/química , Proteínas tau/química
11.
Cell Signal ; 62: 109354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271881

RESUMO

BACKGROUND: In spite of therapeutic approaches, liver cancer is still one of the deadliest type of tumor in which tumor microenvironment may play an active role in the outcome of the disease. Decorin, a small leucine-rich proteoglycan is not only responsible for assembly and maintenance of the integrity of the extracellular matrix, but a natural inhibitor of cell surface receptors, thus it exerts antitumorigenic effects. Here we addressed the question whether this effect of decorin is independent of the tumor phenotypes including differentiation, proliferation and invasion. METHOD: Four hepatoma cell lines HepG2, Hep3B, HuH7 and HLE, possessing different molecular backgrounds, were selected to investigate. After proliferation tests, pRTK arrays, WB analyses, and immunofluorescent examinations were performed on decorin treated and control cells for comparison. RESULTS: Significant growth inhibitory potential of decorin on three out of four hepatoma cell lines was proven, however the mode of its action was different. Induction of p21WAF1/CIP1, increased inactivation of c-myc and ß-catenin, and decrease of EGFR, GSK3ß and ERK1/2 phosphorylation levels were observed in HepG2 cells, pathways already well-described in literature. However, in the p53 deficient Hep3B and HuH7, InsR and IGF-1R were the main receptors transmitting signals. In harmony with its receptor status, Hep3B cells displayed high level of activated AKT. As the cell line is retinoblastoma mutant, ATR/Chk1/Wee1 system might hinder the cell cycle in G2/M phase via phosphorylation of CDK1. In Huh7 cells, all RTKs were inhibited by decorin followed by downregulation of AKT. Furthermore, HuH7 cell line responded with concentration-dependent ERK activation and increased phospho-c-myc level. Decorin had only a non-significant effect on the proliferation rate of HLE cell line. However, it responded with a significant decrease of pAKT, c-myc and ß-catenin activity. In this special cell line, the inhibition of TGFß may be the first step of the protective effect of decorin. CONCLUSIONS: Based on our results decorin may be a candidate therapeutic agent in the battle against liver cancer, but several questions need to be answered. It is certain that decorin is capable to exert its suppressor effect in hepatoma cells without respect to their phenotype and molecular background.


Assuntos
Carcinoma Hepatocelular/genética , Decorina/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , beta Catenina/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Fosforilação , Receptor IGF Tipo 1/genética , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/genética
12.
Sci Rep ; 9(1): 1393, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718543

RESUMO

Intraneuronal accumulation of amyloid-ß(1-42) (Aß1-42) is one of the earliest signs of Alzheimer's disease (AD). Cell surface heparan sulfate proteoglycans (HSPGs) have profound influence on the cellular uptake of Aß1-42 by mediating its attachment and subsequent internalization into the cells. Colocalization of amyloid plaques with members of the syndecan family of HSPGs, along with the increased expression of syndecan-3 and -4 have already been reported in postmortem AD brains. Considering the growing evidence on the involvement of syndecans in the pathogenesis of AD, we analyzed the contribution of syndecans to cellular uptake and fibrillation of Aß1-42. Among syndecans, the neuron specific syndecan-3 isoform increased cellular uptake of Aß1-42 the most. Kinetics of Aß1-42 uptake also proved to be fairly different among SDC family members: syndecan-3 increased Aß1-42 uptake from the earliest time points, while other syndecans facilitated Aß1-42 internalization at a slower pace. Internalized Aß1-42 colocalized with syndecans and flotillins, highlighting the role of lipid-rafts in syndecan-mediated uptake. Syndecan-3 and 4 also triggered fibrillation of Aß1-42, further emphasizing the pathophysiological relevance of syndecans in plaque formation. Overall our data highlight syndecans, especially the neuron-specific syndecan-3 isoform, as important players in amyloid pathology and show that syndecans, regardless of cell type, facilitate key molecular events in neurodegeneration.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Endocitose , Fragmentos de Peptídeos/metabolismo , Sindecanas/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Linhagem Celular , Humanos , Células K562 , Cinética , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Domínios Proteicos , Sindecanas/química
13.
Cell Mol Life Sci ; 76(5): 865-871, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30465083

RESUMO

Prior to the cytokinesis, the cell-matrix interactions should be disrupted, and the mitotic cells round up. Prerequisite of mitosis, the centrosomes duplicate, spindle fibers are generated and move away from each other to opposite sides of the cells marking the cell poles. Later, an invagination in the plasma membrane is formed a few minutes after anaphase. This furrow ingression is driven by a contractile actomyosin ring, whose assembly is regulated by RhoA GTPase. At the completion of cytokinesis, the two daughter cells are still connected by a thin intercellular bridge, which is subjected to abscission, as the terminal step of cytokinesis. Here, it is overviewed, how syndecan-4, a transmembrane, heparan sulfate proteoglycan, can contribute to these processes in a phosphorylation-dependent manner.


Assuntos
Divisão Celular , Proteoglicanas de Heparan Sulfato/fisiologia , Actinas/química , Animais , Citocinese , Humanos , Mitose , Sindecana-4/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
14.
FEBS Lett ; 592(18): 3139-3151, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30129974

RESUMO

Myostatin, a TGF-ß superfamily member, is a negative regulator of muscle growth. Here we describe how myostatin activity is regulated by syndecan-4, a ubiquitous transmembrane heparan sulfate proteoglycan. During muscle regeneration the levels of both syndecan-4 and promyostatin decline gradually after a sharp increase, concurrently with the release of mature myostatin. Promyostatin and syndecan-4 co-immunoprecipitate, and the interaction is heparinase-sensitive. ShRNA-mediated silencing of syndecan-4 reduces C2C12 myoblast proliferation via blocking the progression from G1- to S-phase of the cell cycle, which is accompanied by elevated levels of myostatin and p21(Waf1/Cip1), and decreases in cyclin E and cyclin D1 expression. Our results suggest that syndecan-4 functions as a reservoir for promyostatin regulating the local bioavailability of mature myostatin.


Assuntos
Ciclo Celular , Proliferação de Células , Mioblastos/metabolismo , Miostatina/metabolismo , Sindecana-4/metabolismo , Animais , Linhagem Celular , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fase G1 , Camundongos , Mioblastos/citologia , Interferência de RNA , Ratos , Fase S , Transdução de Sinais , Sindecana-4/genética
15.
J Plant Physiol ; 223: 96-104, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29558689

RESUMO

Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.


Assuntos
Divisão Celular , Fosfatidilgliceróis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechococcus/fisiologia , Transporte de Elétrons
16.
Matrix Biol ; 68-69: 474-489, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29454902

RESUMO

Increased expression of syndecan-1 is a characteristic feature of human liver cirrhosis. However, no data are available on the significance of this alteration. To address this question we designed a transgenic mouse strain that driven by albumin promoter, expresses human syndecan-1 in the hepatocytes. Liver cirrhosis was induced by thioacetamide in wild type and hSDC1+/+ mice of the identical strain. The process of fibrogenesis, changes in signal transduction and proteoglycan expression were followed. In an in vitro experiment, the effect of syndecan-1 overexpression on the action of TGFß1 was determined. Human syndecan-1 and TGFß1 levels were measured by ELISA in the circulation. Without challenge, no morphological differences were observed between wild type and transgenic mice livers, although significant upregulation of phospho-Akt and FAK was observed in the latter. Fibrogenesis in the transgenic livers, characterized by picrosirius staining, collagen type I, and SMA levels, lagged behind that of control in the first and second months. Changes in signal transduction involved in the process of fibrogenesis, as SMAD, MAPK, Akt and GSK, pointed to the decreased effect of TGFß1, and this was corroborated by the decreased mRNA expression of TIEG and the growth factor itself. In vitro experiments exposing the LX2 hepatic stellate cell line to conditioned media of wild type and syndecan-1 transfected Hep3B cell lines proved that medium with high syndecan-1 content inhibits TGFß1-induced upregulation of SMA, TIEG, collagen type I and thrombospondin-1 expression. Detection of liver proteoglycans and heparan sulfate level revealed that their amounts are much higher in control transgenic liver, than that in the wild type. However, it decreases dramatically as a result of shedding after hepatic injury. Shedding is likely promoted by the upregulation of MMP14. As syndecan-1 can bind thrombospondin-1, and as our result demonstrated that the same is true for TGFß1, shed syndecan-1 can remove the growth factor and its activator together into the systemic circulation.Taking together, our results indicate that the effect of syndecan-1 is accomplished on two levels: a, the shedded syndecan can bind, inhibit and remove TGFß1; b, interferes with the activation of TGFß1 by downregulation and binding thrombospondin-1, the activator of the growth factor. However, by the end of the fourth month the protective effect was lost, which is explained by the considerable decrease of syndecan-1 and the almost complete loss of heparan sulfate from the surface of hepatocytes.


Assuntos
Cirrose Hepática Experimental/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Sindecana-1/genética , Sindecana-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Tioacetamida/efeitos adversos , Trombospondina 1/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta1/genética , Regulação para Cima
17.
PLoS One ; 12(11): e0187094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121646

RESUMO

The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.


Assuntos
Mutação/genética , Sindecana-4/genética , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Biológicos , Domínios PDZ , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Sindecana-4/química , Quinases Ativadas por p21/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
19.
Eur J Pharm Sci ; 49(4): 550-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23732629

RESUMO

The long awaited breakthrough of gene therapy significantly depends on the in vivo efficiency of targeted intracellular delivery. Hidden details of cellular uptake present a great hurdle for non-viral gene delivery with liposomes. Growing scientific evidence supports the involvement of polyanionic cell surface carbohydrates in cellular internalization of cationic liposomes. Syndecans, a highly conserved family of transmembrane heparan sulfate proteoglycans serve attachment sites for great variety of cationic ligands including growth factors, cytokines and even parasites. In the present study we quantitatively measured the contribution of various syndecan isoforms to liposome-mediated gene transfer. The obtained data show the superiority of syndecan-4, the ubiquitously expressed isoform of the syndecan family, in cellular uptake of liposomes. Applied mutational analysis demonstrated that gene delivery could be abolished by mutating the glycosaminoglycan attachment site of syndecans, highlighting the importance of polyanionic heparan sulfate side chains in the attachment of cationic liposomes. Blocking sulfation of syndecans also diminished gene delivery, a finding that confirms the essential role of polyanionic charges in binding cationic liposomes. Mutating other parts of the syndecan extracellular domain, including the cell-binding domain, had clearly smaller effect on liposome internalization. Mutational analyses also revealed that superiority of syndecan-4 in liposome-mediated gene delivery is significantly influenced by its cytoplasmic domain that orchestrates signaling pathways leading to macropinocytosis. In summary our study present a mechanistic insight into syndecan-mediated macropinocytic uptake of lipoplexes and highlights syndecan-4 as a superior target for cationic liposomes.


Assuntos
Técnicas de Transferência de Genes , Sindecanas/administração & dosagem , Amilorida/farmacologia , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células , Cloratos/farmacologia , Endocitose/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Lipossomos , Luciferases/genética , Mutação , Estrutura Terciária de Proteína , Sindecanas/química , Sindecanas/genética
20.
PLoS One ; 6(6): e14816, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731601

RESUMO

BACKGROUND: Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.


Assuntos
Movimento Celular , Mesoderma/metabolismo , Mesoderma/patologia , Sindecana-1/química , Sindecana-1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Quimiotaxia/genética , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...